Abstract

BackgroundLow birth weight (LBW) and fetal growth restriction are associated with the development of cardio-metabolic diseases later in life. A recent Mendelian randomization study concluded that the susceptibility of LBW infants to develop hypertension during adulthood is due to the inheritance of hypertension genes from the mother and not to an unfavorable intrauterine environment. Therein, a negative linear association has been assumed between genetically estimated maternal blood pressure (BP) and birth weight, while the observed relationship between maternal BP and birth weight is substantially different from that assumption. As many hypertension genes are likely involved in vasculature development and function, we hypothesized that BP-increasing genetic variants could affect birth weight by reducing the growth of the placenta, a highly vascular organ, without overtly elevating the maternal BP.MethodsUsing a birth cohort in the Japanese population possessing time-series fetal growth velocity data as a target and a GWAS summary statistics of BioBank Japan as a base data, we performed polygenic score (PGS) analyses for systolic BP (SBP), diastolic BP, mean arterial pressure, and pulse pressure. A causal mediation analysis was performed to assess the meditation effect of placental weight on birth weight reduced by maternal BP-increasing PGS. Maternal genetic risk score constituted of only “vasculature-related” BP single nucleotide polymorphisms (SNPs) was constructed to examine the involvement of vascular genes in the mediation effect of placental weight. We identified gestational week in which maternal SBP-increasing PGS significantly decreased fetal growth velocity.ResultsWe observed that maternal SBP-increasing PGS was negatively associated with offspring birth weight. A causal mediation analysis revealed that a large proportion of the total maternal PGS effect on birth weight was mediated by placental weight. The placental mediation effect was remarkable when genetic risk score was constituted of “vasculature-related” BP SNPs. The inverse association between maternal SBP PGS and fetal growth velocity only became apparent in late gestation.ConclusionsOur study suggests that maternal hypertension genes are strongly associated with placental growth and that fetal growth inhibition is induced through the intrauterine environment established by the placenta.

Highlights

  • Low birth weight (LBW) and fetal growth restriction are associated with the development of cardiometabolic diseases later in life

  • A causal mediation analysis revealed that a large proportion of the total maternal polygenic score (PGS) effect on birth weight was mediated by placental weight

  • The inverse association between maternal systolic blood pressure (SBP) PGS and fetal growth velocity only became apparent in late gestation

Read more

Summary

Introduction

Low birth weight (LBW) and fetal growth restriction are associated with the development of cardiometabolic diseases later in life. A recent Mendelian randomization study concluded that the susceptibility of LBW infants to develop hypertension during adulthood is due to the inheritance of hypertension genes from the mother and not to an unfavorable intrauterine environment. Major risk factors are lifestyle factors after birth, epidemiological studies have associated low birth weight (LBW) and/or fetal growth restriction (FGR) with hypertension, cardiovascular diseases, and type 2 diabetes, indicating the existence of prenatal risk factors [2,3,4]. Maternal genetic factors may influence fetal growth directly through the alleles inherited by the fetus, or indirectly through the intrauterine environment, and this idea has been developed into the Mendelian Randomization (MR) approach in the framework of causal inference [7,8,9,10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call