Abstract
Pitch is poorly perceived by cochlear implant (CI) users. However, as it is not well understood how pitch is encoded with electric stimulation, improving pitch representation with a CI is challenging. Changes in place of stimulation along the cochlea have been described as changes in pitch and can be accurately ranked by CI users. However, it remains unknown if place-pitch can be used to encode musical intervals, which are a necessary attribute of pitch. The objective of these experiments is to determine if place-pitch coding can be used to represent musical intervals with a CI. In the first experiment, 10 CI users and 10 normal hearing (NH) controls were tested on their sensitivity to changes in the semitone spacing between each of the notes in the melody "Happy Birthday." The changes were implemented by uniformly expanding or compressing the frequency differences between each note in the melody. The participant's task was to scale how "out-of-tune" the melody was for various semitone spacing distortions. The notes were represented by pure-tones ≥440 Hz to minimize potential useful temporal information from the stimuli. A second experiment replicated the first experiment using single-sided deafened CI users allowing for a within-subject control. A third experiment verified that the CI users who participated in Experiment 1 were each able to determine pitch direction reliably. Unlike NH listeners, CI listeners often ranked all distortions of interval spacing similarly in both the first and second experiment, and no effect of interval spacing was detected across CI users. Some participants found distorted interval spacings to be less out-of-tune than the nominally correct interval spacings. However, these patterns were inconsistent across listeners. Although performance was better for the NH listeners, the third experiment demonstrated that the CI listeners were able to reliably identify changes in pitch direction from place-pitch coding. The data suggest that place-pitch intervals are not properly represented through a CI sound processor. Some limited support is found for place-pitch being useful for interval encoding as some participants demonstrated improved ratings for certain interval distortions. Presumably the interval representation for these participants could be improved by a change to the frequencies represented by each electrode. However, as these patterns vary across listeners, there is not a universal correction to frequency representation that will solve this issue. As results are similar for single-sided deafened CI users, the limitations in ratings are likely not limited by an eroded representation of the melody caused by an extended duration of deafness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.