Abstract

Mineralization is a key process in the formation of bone and cartilage in vertebrates, involving the deposition of calcium- and phosphate-containing hydroxyapatite (HA) mineral within a collagenous matrix. Inorganic phosphate (Pi) accumulation within matrix vesicles (MVs) is a fundamental stage in the precipitation of HA, with PHOSPHO1 being identified as the principal enzyme acting to produce Pi PHOSPHO1 is a dual-specific phosphocholine/phosphoethanolamine phosphatase enriched in mineralizing cells and within MVs. However, the source and mechanism by which PHOSPHO1 substrates are formed before mineralization have not been determined. Here, we propose that 2 enzymes-phospholipase A2 (PLA2) and ectonucleotide pyrophophatase/phosphodiesterase 6 (ENPP6)-act in sequence upon phosphatidylcholine found in MV membranes to produce phosphocholine, which PHOSPHO1 can hydrolyze to liberate Pi This hypothesis is supported by evidence that both enzymes are expressed in mineralizing cells and data showing that phosphatidylcholine is broken down in MVs during mineralization. Therefore, PLA2 and ENPP6 activities may represent a key step in the mineralization process. Further functional studies are urgently required to examine their specific roles in the initiation of skeletal mineralization.-Stewart, A. J., Leong, D. T. K., Farquharson, C. PLA2 and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.