Abstract
Due to the content of lignocellulosic particles, wood plastic composites (WPC) composites can be attacked by both domestic and mold fungi. Household fungi reduce the mechanical properties of composites, while mold fungi reduce the aesthetics of products by changing their color and surface decomposition of the wood substance. As part of this study, the impact of lignocellulosic fillers in the form of sawdust and bark in poly (lactic acid) (PLA)-based biocomposites on their susceptibility to mold growth was determined. The evaluation of the samples fouled with mold fungi was performed by computer analysis of the image. For comparison, tests were carried out on analogous high-density polyethylene (HDPE) composites. Three levels of composites’ filling were used with two degrees of comminution of lignocellulosic fillers and the addition of bonding aids to selected variants. The composites were produced in two stages employing extrusion and flat pressing. The research revealed that PLA composites were characterized by a higher fouling rate by Aspergillus niger Tiegh fungi compared to HDPE composites. In the case of HDPE composites. The type of filler (bark, sawdust) affected this process much more in the case of HDPE composites than for PLA composites. In addition, the use of filler with smaller particles enhanced the fouling process.
Highlights
The rapidly developing industry of wood-plastic composites (WPC) focuses on the introduction of new material solutions for matrix and fillers
At the initial stage mold growth on PLA composites was significantly influenced by the size of the filler particles (PS) and the interaction between the share of the filler and its particles size (FCxPS), the share of the filler and its type (FCXF), and the proportion of the filler, the particles size of the filler and the type of filler (FCxPSxF)
PLA composites are characterized by a higher growth rate by Aspergillus niger Tiegh mold fungi compared to high-density polyethylene (HDPE) composites
Summary
The rapidly developing industry of wood-plastic composites (WPC) focuses on the introduction of new material solutions for matrix and fillers. In both cases, the biodegradability of applied raw materials is crucial. PHA when exposed to anaerobic conditions slowly decomposes under the influence of bacteria present in the soil, sewage, or silt into water and carbon dioxide. For this reason, it can be applied to manufacture packaging and components with short durability. PLA does not biodegrade under ordinary conditions of use, so it can be applied in production of components with a long mean life. Due to its downsides, such as sensitivity to moisture, susceptibility to aging, limited impact strength, and high rigidity [4], PLA is modified in many ways
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.