Abstract

Human periapical cyst mesenchymal stem cells (hPCy-MSCs) are a newly discovered cell population innovatively collected from inflammatory periapical cysts. The use of this biological waste guarantees a source of stem cells without any impact on the surrounding healthy tissues, presenting a valuable potential in tissue engineering and regenerative medicine applications. In the present study, hPCy-MSCs were collected, isolated, and seeded on three experimental mineral-doped porous scaffolds produced by the thermally-induced phase-separation (TIPS) technique. Mineral-doped scaffolds, composed of polylactic acid (PLA), dicalcium phosphate dihydrate (DCPD), and/or hydraulic calcium silicate (CaSi), were produced by TIPS (PLA-10CaSi, PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD). Micro-CT analysis evaluated scaffolds micromorphology. Collected hPCy-MSCs, characterized by cytofluorimetry, were seeded on the scaffolds and tested for cell proliferation, cells viability, and gene expression for osteogenic and odontogenic differentiation (DMP-1, OSC, RUNX-2, HPRT). Micro-CT revealed an interconnected highly porous structure for all the scaffolds, similar total porosity with 99% open pores. Pore wall thickness increased with the percentage of CaSi and DCPD. Cells seeded on mineral-doped scaffolds showed a superior proliferation compared to pure PLA scaffolds (control), particularly on PLA-10CaSi-10DCPD at day 12. A higher number of non-viable (red stained) cells was observable on PLA scaffolds at days 14 and 21. DMP-1 expression increased in hPCy-MSCs cultured on all mineral-doped scaffolds, in particular on PLA-5CaSi-5DCPD and PLA-10CaSi-10DCPD. In conclusion, the innovative combination of experimental scaffolds colonized with autologous stem cells from periapical cyst represent a promising strategy for regenerative healing of periapical and alveolar bone.

Highlights

  • The main stem cell ability to regenerate injured tissues confers them a central role in regenerative medicine

  • Porous mineral-doped scaffolds were prepared starting from polylactic acid (PLA) solutions in DIOX (3.5% wt/vol) as solvent and porogen agent; calcium silicate (CaSi) and dicalcium phosphate dihydrate (DCPD) powders were added to the PLA solution in amounts

  • PLA sample, sample, no no empty empty areas areas were were present in the central portion of the PLA-10CaSi scaffold

Read more

Summary

Introduction

The main stem cell ability to regenerate injured tissues confers them a central role in regenerative medicine. Mesenchymal stem cells (MSCs) retain both the proliferation ability and the capability to modulate inflammatory and immune response. These peculiar features strongly triggered the searching for novel sources of MSCs. The early MSCs were successfully isolated from bone marrow (hBM): surgical harvesting of hBM-MSCs is not a simple procedure, patients must undergo an invasive surgery to aspirate bone marrow from the iliac crests, and cells obtained from hBM are typically few [3]. The numerous issues related to MSCs collection have attracted the interest of researchers in discovering alternative sources of MSCs, in order to obtain them without any invasive or painful procedure

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call