Abstract

Treatment of solid tumors by photodynamic therapy (PDT) was recently shown to trigger a strong acute phase response. Using the mouse Lewis lung carcinoma (LLC) model, the present study examined complement and pentraxin proteins as PDT-induced acute phase reactants. The results show a distinct pattern of changes in the expression of genes encoding these proteins in the tumor, as well as host liver and spleen, following PDT mediated by photosensitizer Photofrin™. These changes were influenced by glucocorticoid hormones, as evidenced by transcriptional activation of glucocorticoid receptor and the upregulation of gene encoding this receptor. The expression of gene for glucocorticoid-induced zipper (GILZ) protein, whose activity is particularly susceptible to glucocorticoid regulation, was also changed in PDT-treated tumors. A direct demonstration that tumor PDT induces glucocorticoid hormone upregulation is provided by documenting elevated levels of serum corticosterone in mice bearing PDT-treated LLC tumors. Tumor response to PDT was negatively affected by blocking glucocorticoid receptor activity, which suggests that glucocorticoid hormones have a positive impact on the therapeutic outcome with this therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call