Abstract

Radiation damage in 4H-SiC samples implanted by 70 keV oxygen ion beams was studied using photoluminescence and electron spin resonance techniques. ESR peak of g = 2.0053 and two zero-phonon lines were observed with the implanted samples. Combined with theoretical calculations, we found that the main defect in the implanted 4H-SiC samples was oxygen-vacancy complex. The calculated defect formation energies showed that the oxygen-vacancy centers were stable in n-type 4H-SiC. Moreover, the \( {\text{V}}_{\text{Si}} {\text{O}}_{\text{C}}^{ 0} \) and \( {\text{V}}_{\text{Si}} {\text{O}}_{\text{C}}^{ - 1} \) centers were optically addressable. The results suggest promising spin coherence properties for quantum information science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.