Abstract
BackgroundCardiac hypertrophy is studied in relation to energy metabolism, autophagy, and ferroptosis, which are associated with cardiovascular adverse events and chronic heart failure. Protein kinase D (PKD) has been shown to play a degenerative role in cardiac hypertrophy. However, the role of ferroptosis in PKD-involved cardiac hypertrophy remains unclear. MethodsA cardiac hypertrophy model was induced by a subcutaneous injection of angiotensin II (Ang II) for 4 weeks. Adeno-associated virus serotype 9 (AAV9)-PKD or AAV9-Negative control were injected through the caudal vein 2 weeks prior to the injection of Ang II. The degree of cardiac hypertrophy was assessed using echocardiography and by observing cardiomyocyte morphology. Levels of ferroptosis and protein expression in the Jun N-terminal kinase (JNK)/P53 signaling pathway were measured both in vivo and in vitro. ResultsThe results indicated that PKD knockdown reduces Ang II-induced cardiac hypertrophy, enhances cardiac function and inhibits ferroptosis. The involvement of the JNK/P53 pathway in this process was further confirmed by in vivo and in vitro experiments. ConclusionIn conclusion, our findings suggest that PKD knockdown mitigates Ang II-induced cardiac hypertrophy and ferroptosis via the JNK/P53 signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.