Abstract

There is no established pharmacological therapy for skin keloids, a wound healing disorder. In this study, we investigated the effect of N-benzoyl staurosporine (PKC412), a protein kinase C inhibitor, on human keloid-derived fibroblasts to examine whether this agent is applicable for the treatment of keloid formation. Although PKC412 induced apoptosis in keloid fibroblasts in a time- and dose-dependent manner, the effective concentration of this agent was much higher than that of staurosporine. Western blotting showed that both PKC412 (10 μM) and staurosporine (100 nM) cleaved pro-caspase-3 to active forms. An in vitro caspase assay also showed that PKC412 and staurosporine elevated caspase-3 activities. Carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), a caspase inhibitor with a broad spectrum, inhibited caspase-3 activities stimulated by PKC412 and staurosporine; however, only PKC412-induced apoptosis, but not staurosporine-induced apoptosis, was prevented by Z-VAD-FMK. These results suggested that PKC412-induced apoptosis, but not staurosporine-induced apoptosis, is mainly mediated by the caspase-dependent mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.