Abstract

A CC chemokine, CCL18, has been previously reported to stimulate collagen production in pulmonary fibroblasts. This study focused on the role of protein kinase C (PKC) in the profibrotic signaling activated by CCL18 in pulmonary fibroblasts. Of the three PKC isoforms that are predominantly expressed in fibroblasts (PKCalpha, PKCdelta, and PKCepsilon), two isoforms (PKCdelta and PKCepsilon) have been implicated in profibrotic intracellular signaling. The role of PKCalpha-mediated signaling in the regulation of collagen production remains unclear. In this study, PKCalpha was found mostly in the cytoplasm, whereas PKCdelta and PKCepsilon were found mostly in the nucleus of cultured primary pulmonary fibroblasts. In response to stimulation with CCL18, PKCalpha but not PKCdelta or PKCepsilon underwent rapid (within 5-10 min) transient phosphorylation and nuclear translocation. Inhibition with dominant-negative mutants of PKCalpha and ERK2, but not PKCdelta or PKCepsilon, abrogated CCL18-stimulated ERK2 phosphorylation and collagen production. The effect of CCL18 on collagen production and the activity of collagen promoter reporter constructs were also abrogated by a selective pharmacologic inhibitor of PKCalpha Gö6976. Stimulation of fibroblasts with CCL18 caused an increase in intracellular calcium concentration. Consistent with the known calcium dependence of PKCalpha signaling, blocking of the calcium signaling with the intracellular calcium-chelating agent BAPTA led to abrogation of PKCalpha nuclear translocation, ERK2 phosphorylation, and collagen production. These observations suggest that in primary pulmonary fibroblasts, PKCalpha but not PKCdelta or PKCepsilon mediate the profibrotic effect of CCL18. PKCalpha may therefore become a viable target for future antifibrotic therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.