Abstract

Calcitonin gene-related peptide (CGRP), is produced in dorsal root ganglia (DRG) neurons and released from primary afferent neurons to mediate hemodynamic effects and neurogenic inflammation. In this work, we determined whether lipopolysaccharide (LPS), an inflammatory stimulator, could trigger CGRP release from cultured DRG neurons and if so, which cellular signaling pathway was involved in this response. Cytoplasmic concentration of calcium ([Ca(2+)](i)) plays a key role in neurotransmitter release, therefore [Ca(2+)](i) was also determined in cultured DRG cells using fluo-3/AM. The results showed that LPS (0.1-10 microg/ml) evoked CGRP release in a time- and concentration-dependent manner from DRG neurons. LPS also increased [Ca(2+)](i) in a concentration-dependent manner. The protein kinase C (PKC) inhibitors, calphostin C 0.5 microM or RO-31-8220 0.1 microM, and the cAMP-dependent protein kinase (PKA) specific inhibitor RP-CAMPS 30 microM or nonspecific inhibitor H8 1 microM inhibited 1 microg/ml LPS-evoked CGRP release and [Ca(2+)](i) increase from DRG neurons. The cGMP-dependent protein kinase (PKG) inhibitor Rp-8-pCPT-cGMPS 30 microM did not block the LPS response. These data suggest that LPS may stimulate CGRP release and [Ca(2+)](i) elevation through PKC and PKA, but not PKG signaling pathway in DRG neurons of neonatal rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.