Abstract

Dissociation constants and corresponding pK(a) values of five drugs were obtained with the Bates-Schwarzenbach method using a Perkin-Elmer Lambda 35 UV/vis spectrophotometer at temperature 298.15 K in the buffer solutions. Atropine, promethazine hydrochloride, ibuprofen, flurbiprofen, and meclofenamic acid sodium salt exhibited pK(a) values of 10.3, 6.47, 5.38, 4.50, and 4.39, respectively. The equilibrium mole fraction solubilities of six drugs were measured in a range of temperatures from 240 to 340 K in three important solvents for drugs: water, ethanol, and 1-octanol using the dynamic method. The basic thermal properties of pure drugs, i.e., melting and glass-transition temperatures, as well as the enthalpy of melting and the molar heat capacity at glass transition (at constant pressure) have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The experimental solubility data have been correlated by means of three commonly known G(E) equations: the Wilson, NRTL, and UNIQUAC, with the assumption that the systems studied here have revealed simple eutectic mixtures. As a measure of goodness of correlation, the root-mean-square deviations of temperature have been used. The activity coefficients of the drugs in saturated solutions for each correlated binary mixture were calculated from the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.