Abstract
Background: The development of advanced computational models for medical imaging is crucial for improving diagnostic accuracy in healthcare. This paper introduces a novel approach for virtual contrast enhancement (VCE) in magnetic resonance imaging (MRI), particularly focusing on nasopharyngeal cancer (NPC). Methods: The proposed model, Pixelwise Gradient Model with GAN for Virtual Contrast Enhancement (PGMGVCE), makes use of pixelwise gradient methods with Generative Adversarial Networks (GANs) to enhance T1-weighted (T1-w) and T2-weighted (T2-w) MRI images. This approach combines the benefits of both modalities to simulate the effects of gadolinium-based contrast agents, thereby reducing associated risks. Various modifications of PGMGVCE, including changing hyperparameters, using normalization methods (z-score, Sigmoid and Tanh) and training the model with T1-w or T2-w images only, were tested to optimize the model's performance. Results: PGMGVCE demonstrated a similar accuracy to the existing model in terms of mean absolute error (MAE) (8.56 ± 0.45 for Li's model; 8.72 ± 0.48 for PGMGVCE), mean square error (MSE) (12.43 ± 0.67 for Li's model; 12.81 ± 0.73 for PGMGVCE) and structural similarity index (SSIM) (0.71 ± 0.08 for Li's model; 0.73 ± 0.12 for PGMGVCE). However, it showed improvements in texture representation, as indicated by total mean square variation per mean intensity (TMSVPMI) (0.124 ± 0.022 for ground truth; 0.079 ± 0.024 for Li's model; 0.120 ± 0.027 for PGMGVCE), total absolute variation per mean intensity (TAVPMI) (0.159 ± 0.031 for ground truth; 0.100 ± 0.032 for Li's model; 0.153 ± 0.029 for PGMGVCE), Tenengrad function per mean intensity (TFPMI) (1.222 ± 0.241 for ground truth; 0.981 ± 0.213 for Li's model; 1.194 ± 0.223 for PGMGVCE) and variance function per mean intensity (VFPMI) (0.0811 ± 0.005 for ground truth; 0.0667 ± 0.006 for Li's model; 0.0761 ± 0.006 for PGMGVCE). Conclusions: PGMGVCE presents an innovative and safe approach to VCE in MRI, demonstrating the power of deep learning in enhancing medical imaging. This model paves the way for more accurate and risk-free diagnostic tools in medical imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.