Abstract
Single-photon-sensitive depth sensors are being increasingly used in next-generation electronics for human pose and gesture recognition. However, cost-effective sensors typically have a low spatial resolution, restricting their use to basic motion identification and simple object detection. Here, we perform a temporal to spatial mapping that drastically increases the resolution of a simple time-of-flight sensor, i.e., an initial resolution of 4 × 4 pixels to depth images of resolution 32 × 32 pixels. The output depth maps can then be used for accurate three-dimensional human pose estimation of multiple people. We develop a new explainable framework that provides intuition to how our network uses its input data and provides key information about the relevant parameters. Our work greatly expands the use cases of simple single-photon avalanche detector time-of-flight sensors and opens up promising possibilities for future super-resolution techniques applied to other types of sensors with similar data types, i.e., radar and sonar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.