Abstract
This study investigates some of the consequences of representing the sky by a rectangular grid of pixels on the dynamic range of images derived from radio interferometric measurements. In particular, the effects of image pixelization coupled to the CLEAN deconvolution representation of the sky as a set of discrete delta functions can limit the dynamic range obtained when representing bright emission not confined to pixels on the grid. Sky curvature effects on non-coplanar arrays will limit the dynamic range even if strong sources are centered on a pixel in a fly's eye representation when such pixel is not located at the corresponding facet's tangent point. Uncertainties in the response function of the individual antennas as well as in the calibration of actual data due to ionospheric, atmospheric or other effects will limit the dynamic range even when using grid-less subtraction (i.e. in the visibility domain) of strong sources located within the field of view of the observation. A technique to reduce these effects is described and examples from an implementation in the Obit package are given. Application of this technique leads to significantly superior results without a significant increase in the computing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.