Abstract
Polymeric materials are pervasive in modern society, in part attributable to the diverse range of properties that are accessible in these materials. Polymers can be stiff or soft, dissipative or elastic, adhesive or nonstick. Localizing the properties of polymeric materials can be achieved by a number of methods, including self-assembly, lithography, or 3-d printing. Here, we detail recent advances in the preparation of "pixelated" polymers prepared by the directed self-assembly of liquid crystalline monomers to yield cross-linked polymer networks (liquid crystalline polymer networks, LCN, or liquid crystalline elastomers, LCE). Through the local and arbitrary control of the orientation of the liquid crystalline units, monolithic elements can be realized with spatial variation in mechanical, thermal, electrical, optical, or acoustic properties. Stimuli-induced variation of these properties may enable paradigm-shifting end uses in a diverse set of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.