Abstract
Robotics grasp detection has mostly used the extraction of candidate grasping rectangles; those discrete sampling methods are time-consuming and may ignore the potential best grasp synthesis. This paper proposes a new pixel-level grasping detection method on RGB-D images. Firstly, a fine grasping representation is introduced to generate the gripper configurations of parallel-jaw, which can effectively resolve the gripper approaching conflicts and improve the applicability to unknown objects in cluttered scenarios. Besides, the adaptive grasping width is used to adaptively represent the grasping attribute, which is fine for objects. Then, the encoder–decoder–inception convolution neural network (EDINet) is proposed to predict the fine grasping configuration. In our findings, EDINet uses encoder, decoder, and inception modules to improve the speed and robustness of pixel-level grasping detection. The proposed EDINet structure was evaluated on the Cornell and Jacquard dataset; our method achieves 98.9% and 96.1% test accuracy, respectively. Finally, we carried out the grasping experiment on the unknown objects, and the results show that the average success rate of our network model is 97.2% in a single object scene and 93.7% in a cluttered scene, which out-performs the state-of-the-art algorithms. In addition, EDINet completes a grasp detection pipeline within only 25 ms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.