Abstract

This paper describes and investigates the performance of an algorithm to correct for "pixel bleeding" caused by slow luminescence centers in laser scanning imaging (e.g., X-ray imaging using photostimulable phosphors and 2D dosimetry using optically stimulated luminescence). The algorithm is based on a deconvolution procedure that takes into account the lifetime of the slow luminescence center and is further constrained by the detection of fast and slow luminescence centers and combining rows scanned in opposite directions. The algorithm was tested using simulated data and demonstrated experimentally by applying it to image reconstruction of two types of Al2O3 X-ray detector films ( Al2O3:C and Al2O3 :C,Mg), whose use in 2D dosimetry in conjunction with laser-scanning readout has so far been prevented by slow luminescence centers (F-centers, 35 ms lifetime). We show that the algorithm allows the readout of Al2O3 film detectors 300-500 times faster than generally allowed considering the lifetime of the main luminescence centers. By relaxing the stringent requirements on the detector's luminescence lifetime, the algorithm opens the possibility of using new materials in 2D dosimetry as well as other laser scanning applications, such as X-ray imaging using storage phosphors and scanning confocal microscopy, although the effect of the noise introduced must be investigated for each specific application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.