Abstract

Four classification algorithms have been assessed and compared with mapped forest fuel types from Terra-ASTER sensor images in a representative area of Tenerife Island (Canary Islands, Spain). A BEHAVE fuel-type map from 2002, together with field data also obtained in 2002 during the Third Spanish National Forest Inventory, was used as reference data. The BEHAVE fuel types of the reference dataset were first converted into the Fire Behaviour Fuel Types described by Scott and Burgan, taking into account the vegetation of the study area. Then, three pixel-based algorithms (Maximum Likelihood, Neural Network and Support Vector Machine) and an Object-Based Image Analysis were applied to classify the Scott and Burgan fire behaviour fuel types from an ASTER image from 3 March 2003. The performance of the algorithms tested was assessed and compared in terms of quantity disagreement and allocation disagreement. Within the pixel-based classifications, the best results were obtained from the Support Vector Machine algorithm, which showed an overall accuracy of 83%; 14% of disagreement was due to allocation and 3% to quantity disagreement. The Object-Based Image Analysis approach produced the most accurate maps, with an overall accuracy of 95%; 4% disagreement was due to allocation and 1% to quantity disagreement. The object-based classification achieved thus an overall accuracy of 12% above the best results obtained for the pixel-based algorithms tested. The incorporation of context information to the object-based classification allowed better identification of fuel types with similar spectral behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call