Abstract

By-product materials of the widely used zinc recycling process of cemented carbides have been studied. Scanning electron microscopy and micro-PIXE techniques have identified elemental concentrations, distributions and purity of by-product materials from an industrial zinc recycling plant. Cobalt surface enrichment, lamellar microstructures of varying composition, including alternating tungsten carbide (WC) grains and globular cobalt, and regions of excess zinc contamination were found in materials with incomplete zinc penetration. Liquid Co–Zn formation occurred above 72wt.% Zn at the furnace temperature of 930°C, and was extracted towards the surface of poorly zinc infiltrated material, primarily by the vacuum used for zinc distillation. Surface enrichment was not observed in material that was zinc infiltrated to the sample center, which was more friable and exhibited more homogeneous porosity and elemental concentrations. The result of incomplete zinc infiltration was an enriched surface zone of up to 60wt.%Co, compared to an original sample composition of ∼10–15wt.%Co. The impact on resulting powders could be higher or inhomogeneous cobalt content, as well as unacceptably high zinc concentrations. PIXE has proven it can be a powerful technique for solving industrial problems in the cemented carbide cutting tool industry, by identifying trace elements and their locations (such as Zn to 0.1wt.% accuracy), as well as the distribution of major elements within WC–Co materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.