Abstract

Traditional computational fluid dynamics (CFD) methods are usually used to obtain information about the flow field over an airfoil by solving the Navier–Stokes equations for the mesh with boundary conditions. These methods are usually costly and time-consuming. In this study, the pix2pix method, which utilizes conditional generative adversarial networks (cGANs) for image-to-image translation, and a deep neural network (DNN) method were used to predict the airfoil flow field and aerodynamic performance for a wind turbine blade with various shapes, Reynolds numbers, and angles of attack. Pix2pix is a universal solution to the image-to-image translation problem that utilizes cGANs. It was successfully implemented to predict the airfoil flow field using fully implicit high-resolution scheme-based compressible CFD codes with genetic algorithms. The results showed that the vortical flow fields of the thick airfoils could be predicted well using the pix2pix method as a result of deep learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call