Abstract
Many ill-posed problems are solved using a discretization that results in a least squares problem or a linear system involving a Toeplitz matrix. The exact solution to such problems is often hopelessly contaminated by noise, since the discretized problem is quite ill conditioned, and noise components in the approximate null-space dominate the solution vector. Therefore we seek an approximate solution that does not have large components in these directions. We use a preconditioned conjugate gradient algorithm to compute such a regularized solution. A unitary change of coordinates transforms the Toeplitz matrix to a Cauchy-like matrix, and we choose our preconditioner to be a low rank Cauchy-like matrix determined in the course of Gu's fast modified complete pivoting algorithm. We show that if the kernel of the ill-posed problem is smooth, then this preconditioner has desirable properties: the largest singular values of the preconditioned matrix are clustered around one, the smallest singular values, corresponding to the lower subspace, remain small, and the upper and lower spaces are relatively unmixed. The preconditioned algorithm costs only O(n lg n) operations per iteration for a problem with n variables. The effectiveness of the preconditioner for filtering noise is demonstrated on three examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.