Abstract
The value of model-based translation in drug discovery and development is now effectively being recognized in many disease areas and among various stakeholders. Such quantitative approaches are expected to facilitate the selection on which compound to prioritize for successful development, predict the human efficacious dose based on preclinical data with adequate precision, guide design, and de-risk later development stages. The importance of time-dependencies, which are typically species-dependent due to different turnover rates of biological processes, is, however, often neglected. For bacterial infections, the choice of dosing regimen is typically relying on preclinical pharmacokinetic (PK) and pharmacodynamic (PD) data, because the bacterial load and disease severity, and consequently the PK/PD relationship, cannot be quantified well on clinical data, given the low-information end points used. It is time to recognize the limitations of using time-collapsed approaches for translation (i.e., methods where targets are based on summary measures of exposure and response). Models describing the full time-course captures important quantitative information of drug distribution, bacterial growth, antibiotic killing, and resistance development, and can account for species-differences in the PK profiles driving the killing. Furthermore, with a model-based approach for translation, we can take a holistic approach in development of a joint model for in vitro, in vivo, and clinical data, as well as incorporating information on the contribution of the immune system. Such advancements are anticipated to facilitate rational decision making during various stages of drug development and in the optimization of treatment regimens for different groups of patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.