Abstract

Although hydrogen is a non-poisonous gas that can dissipate quickly once is released, it causes suffocation at high concentrations and is very risky on some occasions if not suitably handled. In this study, an effective approach was suggested for developing and tuning hydrogen gas sensors, where the crucial effect of nucleation layers and chemical stabilizing agents on the morphology of hydrothermally-assisted growth and its gas sensing performance was demonstrated. For this purpose, ZnO seed layers were separately synthesized by different solution-based chemical processes based on the successive ionic layer adsorption and reaction, spin, and dip coating techniques followed by a hydrothermal treatment under the same conditions. X-ray diffraction measurements revealed that all the synthesized samples have a similar pure hexagonal wurtzite structure with a big difference in the degree of textural orientation along the c-axis of ZnO. Optical transmittances, forbidden bandgap energies, and Urbach energies of the produced samples were influenced to a great extent by the coating techniques and the chemical solutions used. Aside from that, the morphology of the synthesized samples and their overall thicknesses together with the available oxygen vacancies detected by X-ray photoelectron spectroscopy changed considerably. The change in structure and morphology have influenced the wettability of the synthesized samples. They have also greatly influenced the gas sensing performance of the sensors in terms of optimal working temperature, sensitivity, and response/recovery periods. The hydrogen gas detection mechanism of the fabricated sensors and the logic behind the change that occurred in gas sensing performance based on morphology are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call