Abstract

This paper reports on an extensive numerical investigation of the effects of pivot location and mass ratio (m∗= solid/fluid mass) on flow-induced vibration (FIV) of a foil undergoing fully passive two-degree-of-freedom (2-DOF) plunging and pitching motion in a two-dimensional free-stream flow. Here, the normalised pivot location is defined by x=xp∕c, with c the foil length and xp the distance to the foil leading edge. A comprehensive set of numerical simulations were conducted employing an Immersed Boundary Method at a Reynolds number of 400. By analysing the FIV dynamics for three selected mass ratios, m∗=5, 20 and 200, at two pivot locations, x=0.35 and 0.50, it is found that there are two types (type-I and type-II) of FIV responses, one is primarily a driven static instability while the other is strongly associated with vortex shedding. Interestingly, for x=0.50, which is close to the mass centre, increasing the mass ratio can favour suppression of the chaotic response. Importantly, it is shown that there exists a critical mass ratio, above which the foil oscillations are suddenly suppressed. The findings indicate that the combined effects of eccentricity and mass ratio on the foil dynamics can be profound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.