Abstract

An experimental investigation is presented of a turbulent jet issuing from a round sharp-edged orifice plate (OP) into effectively unbounded surroundings. Planar measurements of velocity were conducted using Particle Image Velocimetry (PIV) in the near and transition regions. The Reynolds number, based on the jet initial diameter and velocity, is approximately 72,000. The instantaneous and mean velocities, Reynolds normal and shear stresses were obtained. The centerline velocity decay and the half-velocity radius were derived from the mean velocity. It is revealed that primary coherent structures occur in the near field of the OP jet and that they are typically distributed asymmetrically with respect to the nozzle axis. Comparison of the present PIV and previous hot-wire measurements for the OP jet suggests that high initial turbulence intensity leads to reduced rates of decay and spread of the mean flow field and moreover a lower rate of variation of the turbulence intensity. Results also show that self-similarity of the mean flow is well established from the transition region while the turbulent statistics are far from self-similar within the measured range to 16 diameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.