Abstract

The perturbation induced by a wall-mounted transverse circular cylinder element (TCCE) to a turbulent boundary layer (TBL) is studied using particle image velocimetry (PIV). Measurements are also performed on a smooth wall, which is used as baseline for comparison. The modification of the TBL caused by the sudden perturbation, in a statistical sense, is quantified by comparing the distributions of mean velocity, Reynolds stresses and shape factor in the two geometrical configurations. The impact of the TCCE on the TBL is found to extend more than 9 boundary-layer thickness downstream. Combining the side- and top-view PIV data indicates that the packet-like structures are stretched along the streamwise direction within a flat inclination angle when climbing over the TCCE, and retain their large spatial scales. The separated vortices induced downstream of the TCCE, are quickly lifted up to form the hairpin vortices within strong swirling strength. Then, the robust hairpin packets are generated downstream through the auto-generation scenario, which occupies the low-speed regions beneath the residual hairpin packet’s heads and impairs the process that the low-momentum fluids feed the concentrated vorticity into the residual hairpin heads. Meanwhile, the streamwise-stretched low-momentum regions (LMRs) are redeveloped in the inner layer underneath the new-generated hairpin packets. Further downstream, even though the residual hairpin packets’ heads are merged by the robust hairpin packets, they are not completely dissipated, and still interact with the new-generated hairpin packets in the outer layer to the end of the field of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.