Abstract

Penetration of solar and wind energy into the grid network has raised the concern for grid stability which is generally balanced by operating the hydropower plants over a wide range. This results in several issues, such as rotor-stator interaction (RSI), vortex breakdown, rotating vortex rope (RVR), pressure shocks, vibration, and noise which may lead to failure. Particle Image Velocimetry (PIV) has been used to understand several physical mechanisms in the flow at various operating conditions. A non-negligible uncertainty may arise in the measurements due to calibration, abbreviation, and distortion of the light. Various parameters such as laser sheet thickness, particle type, particle size, particle density, camera resolution, image size and number of images may affect the quality of the measurements. In the present work, a review of PIV measurements performed in hydraulic turbines, mainly Francis, has been carried out. The objective is to develop an experimental set up to perform steady and transient measurements on a model Francis turbine. A maximum deviation of 1.8% in absolute velocity is estimated in the present study as compared to 2–3% reported in the previously performed measurements on Francis turbines. The repeatability of transient measurements is also investigated by extracting two velocity points on a PIV plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.