Abstract

In order to further explore the physical mechanism of rotating stall induced by different rim leakage flow intensification, the velocity distribution of the stall flow field of the mixed flow pump under different rim clearance scales was obtained by Particle Image Velocimetry technology. By comparing the flow structure under different shooting sections, different phases and different working conditions, the influence of rim clearance scale on the flow field near the wall of the mixed flow pump was revealed. The results show that under the design flow conditions, there is an obvious reflux phenomenon near the hub of the guide vane inlet of the mixed flow pump under the four kinds of rim clearance, but the intensity is weak, and it does not affect the main flow field in the impeller channel. With the increase of rim clearance scale, the leakage flow intensity also increases, and the main flow area affected by the TLV structure also increases. In the deep stall condition, the reflux vortex at the inlet of the guide vane of the mixed flow pump still exists at each clearance, but the unsteady flow structure begins to appear inside, especially the large secondary vortex structure formed at the guide vane inlet, which seriously blocks the main flow. With the increase of the rim clearance, the flow field at the inlet of the guide vane is also obviously affected, and the secondary vortex core gradually moves towards the end wall area, resulting in an increase in the blocked area in the flow field. At the same time, the unsteady flow intensity of the flow field shows a nonlinear increasing trend. The unsteady strength of flow field increases rapidly with small gap impellers, while the unsteady strength changes slowly with large gap impellers. This study provides a reference for optimizing the rim clearance of mixed-flow pump and improving the efficiency of mixed-flow pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.