Abstract

High-pressure water jets bear a great technological potential to enhance geothermal deep drilling. Compared to existing water cutting technologies, significantly different operation conditions are encountered under deep-drilling conditions, such as high ambient pressures. The fundamental fluid mechanics are significantly affected by those operation conditions. In this work we examine the influence of increasing ambient pressure of up to 12.0 MPa on the water jet characteristics under submerged drilling conditions. PIV measurements of the jet flow field at changing cavitation numbers reveal two characteristic regimes, which are distinguished by a critical cavitation number. In the cavitating regime, the jet decays considerably faster with increasing distance to the nozzle than in the non-cavitating regime. In addition to that, an increasing cavitation intensity shortens the potential core length of the water jet and increases the jet spreading angle and with this has a similar effect on the jet as increasing turbulence intensity in single-phase flows. Related to the decreasing kinetic energy of the jet in the cavitating regime, the resulting impact force of the water jet on the specimen surface decreases with increasing cavitation intensity. Our investigations indicate that a technology transfer from water jet cutting to submerged jet drilling requires adjustments of both nozzle geometries and jet operation conditions.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call