Abstract
In the present work, planar and tomographic PIV are used to investigate how the organisation of wall turbulence is altered when actuators are operated with the objective of reducing the skin friction drag. When the wall is mechanically oscillated in the spanwise direction, high-resolution planar PIV enable the direct measurement of wall shear and a 15% reduction of skin friction is observed. The use of tomographic PIV enables access to the threedimensional organisation of low- and high-speed streaks, along with ejection events and associated hairpin vortices. These observations help forming a conceptual model of the salient drag reduction mechanism, whereby hairpin autogeneration is inhibited through a tilting action at the tail of low-speed streaks. The second part of the study documents an effort to surrogate the mechanical oscillation by means of a densely distributed array of AC-DBD plasma actuators. The latter are first characterised in quiescent flow, where the induced velocity distribution is obtained and compared to the solution of the classical second Stokes problem that models the mechanical oscillation. The induced peak of spanwise velocity is found to surpass the velocity of the oscillating wall. However, the wall jet height develops further away from the wall. More importantly, the spatially inhomogeneous distribution of the unsteady body force produces an unwanted lattice of starting streamwise vortices. The latter are deemed to be detrimental for the purpose of drag reduction, compared to the orderly and homogeneous sideways motion induced by mechanical wall motion. The application of the AC-DBD actuator currently leads to a pronounced momentum deficit in the logarithmic region and increases skin friction. Finally, further research directions are anticipated, that potentially circumvent the formation of streamwise vortices by means of AC-DBD actuators operating in steady regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.