Abstract

The capacity of the pituitary to suppress hormone secretion in response to somatostatin (SRIF) is markedly age dependent. Immature pituitaries are relatively resistant to SRIF effects, and increasing sensitivity to SRIF with advancing age is believed to cause characteristic developmental changes in pituitary hormone secretion in mammals. However, the cellular mechanism(s) underlying this developmental pattern of response to SRIF are not understood. Because somatostatin receptors (ssts) are critical mediators of SRIF's actions on target tissues, we investigated the expression of sst1, sst2, sst3, sst4, and sst5 messenger RNA (mRNA) in pituitaries of developing and mature rats. Animals were studied at embryonic day 19.5, and at postnatal days 2, 12, 30, 45, 70, and 1 yr; these ages correspond to major changes in circulating GH levels and pituitary responsiveness to SRIF. Pituitary levels of sst2 mRNA increased strikingly and progressively with advancing age after birth (F = 30.92, P < 0.0001). Compared with 2-day-old pituitaries, sst2 mRNA abundance rose 3.25-fold by 12 days of age and 6-fold by 70 days of age. Moreover, Western blot analysis indicated a marked increase in pituitary expression of sst2A protein with advancing age. By contrast, pituitary abundance of sst1, sst3, sst4, and sst5 mRNAs did not differ with age. To assess the role of endogenous SRIF in regulating perinatal sst2 gene expression, we also administered a well-characterized SRIF antiserum (or NSS as controls; 10 microl/10 g) sc daily from postnatal days 2 to 12 of life. Treatment with SRIF antiserum raised GH levels but did not alter pituitary sst2 mRNA abundance, compared with controls. Taken together, these data indicate that 1) the perinatal rat pituitary expresses the same complement of ssts as the adult pituitary; 2) expression of ssts is developmentally regulated in a highly subtype-specific manner; 3) pituitary sst2 mRNA and sst2A protein increase markedly and progressively with advancing age after birth; and 4) the perinatal rise in sst2 mRNA levels is unlikely to be regulated by endogenous SRIF. The finding of subtype-specific, developmentally determined sst expression indicates a novel and potentially fundamental mechanism of sst regulation, and suggests a molecular mechanism underlying developmental maturation in the capacity of the pituitary to respond to SRIF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.