Abstract

Intrauterine growth restriction (IUGR) is one of the major causes of short stature in childhood. Abnormalities in the growth hormone (GH) axis have frequently been observed in children who are born intrauterine growth restricted and GH treatment is effective to improve final height. However, the way that the GH axis is involved is not fully understood. Previously, when investigating the effect of IUGR on the central somatotrophic axis, a hypothalamic effect was discovered with elevated somatostatin and decreased neuropeptide Y mRNA expression levels, whereas serum GH and insulin-like growth factor I (IGFI) were unaltered. These findings were thought to indicate a hypothalamic alteration of the GH axis due to IUGR, probably to compensate pituitary output, thereby normalising peripheral values of GH and IGFI. Therefore, the present study aimed to evaluate the effect of IUGR on the pituitary GH axis in this rat model. Pups from rats that underwent bilateral uterine artery ligation at day 17 of pregnancy were studied. Pituitary glands were collected from 1-year-old offspring for quantitative measurements of GH, GH-receptor (GH-R), GH-releasing hormone receptor (GHRH-R), somatostatin receptor subtype 2 and 5, IGFI and IGFI receptor mRNA levels using a real-time reverse transcriptase-polymerase chain reaction. In addition, liver GH-R and IGFI mRNA expression levels were measured and a radioimmunoassay was performed to determine serum IGFI levels. In the IUGR rat, levels of pituitary GH, GH-R and GHRH-R relative gene expression (RGE) were increased. No differences were found in the RGE level of all other pituitary growth factors, liver GH-R and IGFI, and serum IGFI concentration between IUGR and control rats. The present data show that intrauterine growth failure leads to changes in the pituitary that might counterbalance the effects found previously in the hypothalamus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.