Abstract

Inhibin is a gonadal protein that specifically inhibits the secretion of pituitary follicle-stimulating hormone (FSH). Two forms of inhibin (A and B) have been purified from porcine follicular fluid and characterized as heterodimers of relative molecular mass (Mr) 32,000 (ref. 2). Each inhibin is comprised of an identical alpha-subunit of Mr 18,000 and a distinct but related beta-subunit of Mr 13,800-14,700 linked by interchain disulphide bond(s). Throughout the purification of inhibins, we consistently observed two fractions which stimulated the secretion of pituitary FSH. We report here the isolation of one of the FSH-releasing proteins; it has a Mr of 24,000 and its N-terminal sequences up to residue 32 are identical to those of each beta-subunit of inhibins A and B. In the presence of reducing agents, SDS-polyacrylamide gel electrophoresis resolves the FSH-releasing substance into two subunits which are identical in their migration behaviour to the reduced beta-subunits of inhibins A and B. Based on the N-terminal sequence data and Mr of the intact and reduced molecules, we propose that the FSH-releasing substance, which is active in picomolar concentrations, is a heterodimeric protein composed of the two beta-subunits of inhibins A and B linked by interchain disulphide bond(s). The structural organization of the FSH-releasing substance is homologous to that of transforming growth factor-beta (TGF-beta), which also possesses FSH-releasing activity in the same bioassay. We suggest that the substance be called activin to signify the fact that it has opposite biological effects to inhibin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.