Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP), a potent stimulant of catecholamine secretion, increased catecholamine production in cultured porcine adrenal medullary chromaffin cells. PACAP induced dose- and time-dependent increases in mRNAs for the catecholamine synthesizing enzymes, tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH), with maximal 6- and 4-fold increases occurring at 8–16 h, respectively. The half-maximally and maximally effective PACAP concentrations for stimulation of TH and DBH gene expression were 0.5 and 3 nM, respectively. The TH protein level also showed an increase over the unstimulated basal level at 16–24 h in PACAP-stimulate cells. We previously demonstrated that PACAP activates both phospholipase C and adenylate cyclase in adrenal medullary cells. Addition of forskolin alone induced increases in mRNA expression of both TH and DBH. The phosphodiesterase inhibitor 3- isobutyl-1-methylxanthine potentiated the induction of TH and DBH mRNAs by PACAP. Addition of the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also caused increases in TH and DBH mRNA levels. In protein kinase C-downregulated cells pretreated with PMA for 24 h, the stimulatory effect of PACAP on TH and DBH gene expression was diminished. These results suggest that cAMP and protein kinase C mediate the PACAP-induced TH and DBH gene expression. Removal of extracellular Ca2+ with EGTA enhanced the PACAP-induced increases in both cellular cAMP and mRNA levels of TH and DBH, suggesting that Ca2+ has an inhibitory effect on the induction of TH and DBH mRNAs. In conclusion, the present study indicates that PACAP coordinately upregulates the gene expression of both TH and DBH by activating the cAMP and protein kinase C signaling pathways, leading to simulation of cate-cholamine sythesis, while C a2+ negatively regulates TH and DBH gene expression in porcine adrenal medullary cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.