Abstract
The paraventricular nucleus of the thalamus (PVT) is a limbic brain structure that affects ethanol (EtOH) drinking, but the neurochemicals transcribed in this nucleus that may participate in this behavior have yet to be fully characterized. The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is known to be transcribed in other limbic areas and to be involved in many of the same behaviors as the PVT itself, possibly including EtOH drinking. It exists in 2 isoforms, PACAP-38 and PACAP-27, with the former expressed at higher levels in most brain regions. The purpose of this study was to characterize PACAP in the PVT and to assess its response to EtOH drinking. First, EtOH-naïve, Sprague Dawley rats were examined using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry, to characterize PACAP mRNA and peptide throughout the rostrocaudal axis of the PVT. Next, EtOH-naïve, vGLUT2-GFP transgenic mice were examined using immunohistochemistry, to identify the neurochemical phenotype of the PACAPergic cells in the PVT. Finally, Long Evans rats were trained to drink 20% EtOH under the intermittent-access paradigm and then examined with PCR and immunohistochemistry, to determine the effects of EtOH on endogenous PACAP in the PVT. Gene expression of PACAP was detected across the entire PVT, denser in the posterior than the anterior portion of this nucleus. The protein isoform, PACAP-27, was present in a high percentage of cell bodies in the PVT, again particularly in the posterior portion, while PACAP-38 was instead dense in fibers. All PACAP-27+ cells colabeled with glutamate, which itself was identified in the majority of PVT cells. EtOH drinking led to an increase in PACAP gene expression and in levels of PACAP-27 in individual cells of the PVT. This study characterizes the PVT neuropeptide, PACAP, and its understudied protein isoform, PACAP-27, and demonstrates that it is involved in pharmacologically relevant EtOH drinking. This indicates that PACAP-27 should be further investigated for its possible role in EtOH drinking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.