Abstract

Pitting corrosion of high-strength steel 10Ni8CrMoV under square wave polarization (SWP) in simulated deep-sea environment is investigated and the possible mechanism is proposed. The results show that potential perturbation generates periodic intensification effect on both anodic and cathodic processes by frequently breaking the electrode equilibrium state. The intensity of periodic intensification effect essentially depends on the concentration gradient of Fe2+ cations at the steel/solution interface which acts as the forced electrochemical oscillator. The concentration gradient and the resulting concentration polarization effect increase periodically with the increase in SWP potential range. The morphology observation of the pitting and electric charge calculation indicate that the periodic intensification effect can promote the initiation and growth of pits by enhancing the anodic dissolution even under cathodic protection, but it is ineffective below the hydrogen evolution potential. The decrease in either upper or lower potential can mitigate anodic dissolution. Through the statistical analysis of pitting size, it is found that the wide potential range tends to activate the metastable pitting formed under hydrostatic pressure, forming densely distributed pitting. Meanwhile, it is more favorable to the formation of fully grown pits with high size dispersion degree when the proportion of electric charge in the anodic process is higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call