Abstract

On the planet Mercury, pyroclastic deposits formed by explosive volcanism are developed around rimless volcanic pits that are up to dozens of kilometers in diameters. Some pyroclastic deposits on Mercury, however, host no discernable main eruption centers but feature pitted-ground terrains that each consists of many similar sized and irregularly shaped pits. Individual pits are usually much smaller and shallower than typical volcanoes on Mercury. The origin of these landforms is unknown, but it is indicative of styles of volcanism on Mercury and/or post-volcanic modifications. Here, we investigate the possible origin of these peculiar landforms based on their geological context, morphology, geometry, reflectance spectra, and geophysical background. Reflectance spectra of pyroclastic deposits around such volcanoes are comparable with those erupted from typical volcanic pits on Mercury, suggesting a genetic relation between these pitted-ground terrains with explosive volcanism, and the source magma might have similar compositions. Pitted-ground volcanoes are mainly observed in impact structures, and two cases were formed in high-reflectance smooth plains and channeled lava flows. Most pitted-ground volcanoes are relatively degraded compared with typical volcanoes on Mercury, and some might have been formed in geological recent times judged by both their pristine preservation and crosscutting relationship with impact rays. All pitted-ground volcanoes have unconfined morphology boundaries, and each case is composed by dozens of rimless pits that have similar preservation states and interconnected edges. Such morphological characteristics are unique among volcanic landforms on terrestrial bodies, and they cannot be explained by multiple post-eruption collapses of a main explosive volcano. Pitted-ground volcanoes that are developed in lava flows with the same age have different preservation states, suggesting that the pits were not formed by escape of thermally destabilized volatiles from substrate and subsequent roof collapses. The largest pitted-ground volcano (~3700 km2) is located on the Borealis Planitia, and Bouguer gravity data reveal no larger mass concentration in the subsurface than surrounding terrains, consistent with a paucity of shallow intrusions in the crust of Mercury. Short-term and spatially-clustered explosive eruptions could explain the peculiar morphology and geometry of the pits, suggesting that pits in a given pitted-ground volcano are akin to swarms of monogenetic volcanoes. However, possible magma dynamics for the formation of pitted-ground volcanoes cannot be confirmed until future high-resolution gravity mapping could reveal detailed interior structures beneath these volcanoes. Based on comparative studies with spatially-clustered and similarly aged volcanoes on Earth, we interpret that a combination of pervasive crustal fractures and regional thermal anomaly in the thin mantle of Mercury might have caused such short-term and spatially-clustered explosive eruptions. If this interpretation was true, the heavy degradation state of most pitted-ground volcanoes and the few well-preserved cases are consistent with an overall cooling trend of the mantle, indicating the existence of longstanding heterogeneous thermal structures in the mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call