Abstract

The strong wavelength dependency of diffractive elements casts reasonable doubts on the reliability of near-infrared- (NIR)-based clinical instruments, such as aberrometers and double-pass systems, for assessing, post-surgery, the visual quality of eyes implanted with diffractive multifocal intraocular lenses (DMIOLs). The results obtained for such patients when using NIR light can be misleading. Ordinary compensation for the refractive error bound to chromatic aberration is not enough because it only considers the best focus shift but does not take into account the distribution of light energy among the foci which strongly depends on the wavelength-dependent energy efficiency of the diffractive orders used in the DMIOL design. In this paper, we consider three commercial DMIOL designs with the far focus falling within the range of (-1, 0, +1)-diffractive orders. We prove theoretically the differences existing in the physical performance of the studied lenses when using either the design wavelength in the visible spectrum or a NIR wavelength (780 to 850 nm). Based on numerical simulation and on-bench experimental results, we show that such differences cannot be neglected and may affect all the foci of a DMIOL, including the far focus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call