Abstract
This paper aims to present the novel routes to periodic and chaotic bursting oscillations, i.e. the different routes via delayed pitchfork bifurcations, a cascade of inverse period doubling bifurcations, Hopf bifurcations and homoclinic orbits, based on the parametrically driven Jerk circuit system. Firstly, by calculating the corresponding characteristic polynomial, we obtain the stabilities of different attractors and the critical values related to different bifurcations. Moreover, the transition mechanisms among different stable attractors have been revealed, including homoclinic connection and chaotic attractors. Secondly, based on the analysis of stabilities, bifurcations and transitions among different stable attractors, we investigate the mechanisms of different bursting oscillations. A distinct delayed supercritical pitchfork bifurcation is observed when the slow-varying parameter passes through the supercritical pitchfork bifurcation point periodically. We see that the delayed behavior may terminate at different parameter areas, which leads to different types of bursting oscillations. In particular, two novel chaotic bursting patterns, the ‘delayed sup-pitchfork/a cascade of inverse flip/supHopf’ chaotic bursting and the ‘delayed sup-pitchfork/a cascade of inverse flip/homoclinic connection/a cascade of inverse flip/supHopf’ chaotic bursting, are revealed. Our research enriches the routes to bursting oscillations and deepens the understanding of bursting phenomena. Finally, the accuracy of our study is verified by the numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.