Abstract

Recent studies have suggested that the saliency or the strength of pitch of complex sounds can be accounted for on the basis of the temporal properties in the stimulus waveform as measured by the height of the first peak in the waveform autocorrelation function. We used a scaling procedure to measure the pitch strength from 15 listeners for four different pitches of complex sounds in which the height of the first peak in the autocorrelation function systematically varied. Pitch strength judgments were evaluated in terms of a modification of Stevens's power law in which temporal information was used from both the waveform fine structure and the envelope. Best fits of this modified power law to the judged pitch strengths indicate that the exponent in Stevens's power law is greater than 1. The results suggest that pitch strength is primarily determined by the waveform fine structure, but the stimulus envelope can also contribute to the pitch strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call