Abstract

AbstractElectrostatic electron cyclotron harmonic (ECH) waves are generally excited in the magnetic equator region, in the sector from nightside to dayside during geomagnetically active conditions, and cause the pitch angle scattering by cyclotron resonance. The scattered electrons precipitate into the Earth's atmosphere and cause auroral emission. However, there is no observational evidence that ECH waves actually scatter electrons into the loss cone in the magnetosphere. In this study, from simultaneous wave and particle observation data obtained by the Arase satellite equipped with a high‐pitch angular resolution electron analyzer, we present evidence that the ECH wave intensity near the magnetic equator is correlated with an electron flux inside the loss cone with an energy of about 5 keV. The simulation suggests that this electron flux contributes to the auroral emission at 557.7 nm with an intensity of about 200 R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.