Abstract

Using numerical simulations, we analyze the time evolution of the pitch-angle distribution of 500 MeV and 1 GeV solar protons, released impulsively near the Sun, at 1 au. The numerical model solves the equations of motion of an ensemble of particles that move in both the average Parker spiral field and a large-scale turbulent interplanetary magnetic field (IMF). Our model also includes the heliospheric current sheet (HCS). The focus of this study is to determine the effect of the large-scale turbulent IMF on the pitch-angle distribution of GV-rigidity protons and its time variations in terms of understanding variations in ground-level enhancement (GLE) events. Our particular interest is to explain the two distinct opposite-directed fluxes of the unusual event on 1989 October 22 (GLE#44). The results show that by adding the large-scale turbulence to the average Parker IMF, the pitch-angle distribution at 1 au depends strongly on the observer’s location relative to the release location of the particles at the Sun. Even a 0.2° displacement in latitude or longitude leads to a significant change in the observed distribution and/or its variation in time. We find that there are some observer locations for which the distinct sunward and antisunward fluxes coexist at certain times of the events. We also find that the HCS has an important effect. For instance, even in locations of poor magnetic connection with the release location at the Sun, but near the HCS, there can be two fluxes moving in different directions at the same time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call