Abstract

Statins effectively lower low-density lipoprotein-cholesterol (LDL-C) and reduce cardiovascular risk in people with dyslipidemia and cardiometabolic diseases such as Metabolic syndrome (MetS) or type 2 diabetes (T2D). In addition to elevated levels of LDL-C, people with these conditions often have other lipid-related risk factors, such as high levels of triglycerides, low levels of high-density lipoprotein-cholesterol (HDL-C), and a preponderance of highly atherogenic, small, dense low-density lipoprotein particles. The optimal management of dyslipidemia in people with MetS or T2D should therefore address each of these risk factors in addition to LDL-C. Although statins typically have similar effects on LDL-C levels, differences in chemical structure and pharmacokinetic profile can lead to variations in pleiotropic effects, adverse event profiles and drug-drug interactions. The choice of statin should therefore depend on the characteristics and needs of the individual patient. Compared with other statins, pitavastatin has distinct pharmacological features that translate into a broad range of actions on both apolipoprotein-B-containing and apolipoprotein-A-containing lipoproteins. Studies show that pitavastatin 1 to 4 mg is well tolerated and significantly improves LDL-C and triglyceride levels to a similar or greater degree than comparable doses of atorvastatin, simvastatin or pravastatin, irrespective of diabetic status. Moreover, whereas most statins show inconsistent effects on HDL-C levels, pitavastatin-treated patients routinely experience clinically significant elevations in HDL-C that are maintained and even increased over the long term. In addition to increasing high-density lipoprotein quantity, pitavastatin appears to improve high-density lipoprotein function and to slow the progression of atherosclerotic plaques by modifying high-density lipoprotein-related inflammation and oxidation, both of which are common in patients with MetS and T2D. When choosing a statin, it is important to note that patients with MetS have an increased risk of developing T2D and that some statins can exacerbate this risk via adverse effects on glucose regulation. Unlike many statins, pitavastatin appears to have a neutral and even beneficial effect on glucose regulation, making it a useful treatment option in this high-risk group of patients. Together with pitavastatin’s beneficial effects on the cardiometabolic lipid profile and its low potential for drug-drug interactions, this suggests that pitavastatin might be a useful lipid-lowering option for people with cardiometabolic disease.

Highlights

  • Numerous clinical trials have demonstrated that statins effectively lower low-density lipoprotein-cholesterol (LDL-C) and reduce cardiovascular (CV) risk in people with dyslipidemia and Metabolic syndrome (MetS) or type 2 diabetes (T2D) [1,2]

  • (0.79, 0.72 to 0.86; P

  • A pivotal phase III study in 857 European patients with hypercholesterolemia or mixed dyslipidemia showed that 12-week treatment with pitavastatin 2 mg/day reduced LDL-C by 39.0% compared with 35.0% with simvastatin 20 mg/day (P = 0.014), whereas reductions with pitavastatin 4 mg/day and simvastatin 40 mg/day were 44.0% and 42.8%, respectively (P = NS) [21]

Read more

Summary

Introduction

Numerous clinical trials have demonstrated that statins effectively lower low-density lipoprotein-cholesterol (LDL-C) and reduce cardiovascular (CV) risk in people with dyslipidemia and Metabolic syndrome (MetS) or type 2 diabetes (T2D) [1,2]. The CAPITAIN study in 14 healthy male adults with well-defined MetS showed that 6-month treatment with the highest clinically available dose of pitavastatin (4 mg/day) did not significantly change mean glucose-related or insulin-related parameters, including fasting plasma glucose, the Homeostasis Model Assessment index, insulin levels, insulin/glucose ratios, or hemoglobin A1c levels, and showed that glycemic parameters were generally improved [63] Consistent with these results, a subanalysis of LIVES study data showed a significant 0.28% decrease in hemoglobin A1c levels (P

35. Teramoto T
64. J-PREDICT Study Group
Findings
67. Teramoto T
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call