Abstract

Long term exposure tests have been carried out on a 3 NiCrMoV steam turbine disc steel in the form of cylindrical tensile test specimens self-loaded to 90% of σ 0.2 and exposed to three environmental conditions, viz. deaerated pure water, aerated pure water, and aerated water containing 1.5 ppm of chloride ion. Pitting occurred in all environments but the density and depth of pits in the chloride-containing medium was markedly greater. No cracking was observed in deaerated pure water but cracks initiated in aerated water between 13 and 19 months and in less than 7 months in aerated 1.5 ppm Cl − solution. The probability of a crack initiating from a pit of specific depth in aerated solution could be described well by a Weibull function. Profiling of pits and cracks in the disc steel tested in aerated 1.5 ppm Cl − solution showed that there while there were many cracks with a depth greater than that of the corresponding pit the depth of some cracks was smaller than that of the corresponding pit, suggesting that cracks do not necessarily initiate from the bottom of the pits. The growth rate of short cracks emerging from pits appeared greater than that of long cracks in fracture mechanics specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.