Abstract

MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> superconducting thin wires sheathed with stainless steel (SS) have been prepared by in-situ powder-in-tube (PIT) process. Using Magnesium hydride MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and amorphous B powders, SS sheathed MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> thin wires have been fabricated through drawing to form the round wires of 0.20 mm ~ 0.10 mm in diameter. The SS sheath of 0.1 mm in diameter was hardened to be a Vickers hardness of around 600 HV through cold-working at room temperature without annealing. The heat treatment was performed at 630°C for 5 h in Ar gas atmosphere. The SS sheath recovered the hardness of 400 HV after heat treatment. The MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> wires show the critical temperature (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) of around 35 K in onset and sharp transition of 2 K. The transport critical current (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) at 4.2 K and self-field are 40 A and 8 A for the MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> thin wires of 0.2 mm and 0.1 mm in diameter, respectively. The I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> values correspond to the critical current density (J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) of around 4,000-5,000 A/mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The present MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> thin wires with low thermal conductivity are promising as level sensors for liquid hydrogen and current leads with small heat leakage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call