Abstract
In pursuit of high imaging quality, optical sparse aperture systems must correct piston errors quickly within a small range. In this paper, we modified the existing deep-learning piston detection method for the Golay-6 array, by using a more powerful single convolutional neural network based on ResNet-34 for feature extraction; another fully connected layer was added, on the basis of this network, to obtain the best results. The Double-defocused Sharpness Metric (DSM) was selected first, as a feature vector to enhance the model performance; the average RMSE of the five sub-apertures for valid detection in our study was only 0.015λ (9 nm). This modified method has higher detecting precision, and requires fewer training datasets with less training time. Compared to the conventional approach, this technique is more suitable for the piston sensing of complex configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.