Abstract

In the present work, an algorithm for the solution of the Reynolds equation incorporating the Elrod–Adams cavitation model and appropriately modified to account for hydrophobic surfaces has been developed and solved by means of the finite difference method. The algorithm has been utilized to calculate the frictional characteristics of piston rings of a large two-stroke marine diesel engine, and to evaluate their performance, in terms of minimum film thickness, friction force, and power loss over a full-engine cycle, including time-dependent phenomena. For improving frictional behavior, two surface treatments of the piston ring surface have been studied, namely hydrophobicity and artificial surface texturing, which are introduced at appropriate parts of the ring face. Following a parametric analysis, optimal texturing and hydrophobicity design parameters have been identified for operation with maximum value of minimum film thickness and minimum friction losses. The present results demonstrate that substantial performance improvement can be achieved if hydrophobicity or artificial surface texturing is properly introduced at the faces of a piston ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call