Abstract

BackgroundThe pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures. Unlike common wheat varieties, HTS-1 produces three to six pistils per floret, potentially increasing the yield. Thus, HTS-1 is highly valuable in the study of floral development in wheat. In this study, we conducted RNA sequencing of the transcriptomes of the pistillody stamen (PS) and the pistil (P) from HTS-1 plants, and the stamen (S) from the non-pistillody control variety Chinese Spring TP to gain insights into pistil and stamen development in wheat.ResultsApproximately 40 Gb of processed reads were obtained from PS, P, and S. De novo assembly yielded 121,210 putative unigenes, with a mean length of 695 bp. Among these high-quality unigenes, 59,199 (48.84%) had at least one significant match with an existing gene model. A total of 23, 263, and 553 differentially expressed genes were identified in PS vs. P, PS vs. S, and P vs. S, respectively, with differences in expression greater than five-fold. Among the differentially expressed genes, 206 were highly correlated with stamen and pistil development. These genes include WM27B, DL, YAB1, YABBY4, WM 5, CER 1, and WBLH1, which have been implicated in flower development. The expression patterns of 25 differentially expressed genes were confirmed through quantitative real-time reverse transcription PCR.ConclusionsAnalysis of this transcriptome resource enabled us to characterize gene expression profiles, examine differential gene expression, and produce a candidate gene list related to wheat stamen and pistil development. This work is significant for the development of genomic resources for wheat, and provides important insights into the molecular mechanisms of wheat stamen and pistil development.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1453-0) contains supplementary material, which is available to authorized users.

Highlights

  • The pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures

  • HTS1 plants exhibit different florets; i.e., some HTS-1 stamens turn into pistils or a combination of stamens and pistils

  • A normal pistil and stamen are shown in Figure 1-b and 1-c

Read more

Summary

Introduction

The pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures. One way to improve the wheat yield potential is to increase the grain number per spike and unit area [1,2]. For this purpose, wheat scientists have considered a wide range of genetic variations in the morphological structure of wheat to obtain high grain numbers per spike. HTS-1 is a significant genetic material to study the floral development of wheat; this line has the potential to increase wheat yield

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.