Abstract

This paper uses a connection between bounded remainder sets in Rd and cut-and-project sets in R together with the fact that each one-dimensional Pisot substitution sequence is bounded distance equivalent to some lattice in order to construct several bounded remainder sets with fractal boundary. Moreover it is shown that there are cut-and-project sets being not bounded distance equivalent to each other even if they are locally indistinguishable, more precisely: even if they are contained in the same hull.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.